Proving a subspace. How to prove something is a subspace. "Let Π Π be a plane ...

For example, if we have linear maps. A : Rm → Rn and B

2 Subspaces Now we are ready to de ne what a subspace is. Strictly speaking, A Subspace is a Vector Space included in another larger Vector Space. Therefore, all properties of a Vector Space, such as being closed under addition and scalar mul-tiplication still hold true when applied to the Subspace. ex. We all know R3 is a Vector Space. It ...If you have to do it otherwise, you can always just check the two conditions for being a subspace, viz closure under addition and scalar multiplication. Share. Cite. Follow answered Apr 22, 2013 at 6:47. Lord_Farin Lord_Farin. 17.6k 9 9 gold badges 49 49 silver badges 126 126 bronze badges138 Chapter 5. Vector Spaces: Theory and Practice observation answers the question “Given a matrix A, for what right-hand side vector, b, does Ax = b have a solution?” The answer is that there is a solution if and only if b is a linear combination of the columns (column vectors) of A. Definition 5.10 The column space of A ∈ Rm×n is the set of all …2. Determine whether or not the given set is a subspace of the indicated vector space. (a) fx 2R3: kxk= 1g Answer: This is not a subspace of R3. It does not contain the zero vector 0 = (0;0;0) and it is not closed under either addition or scalar multiplication. (b) All polynomials in P 2 that are divisible by x 2 Answer: This is a subspace of P 2.We’ll prove that in a moment, but rst, for an ex-ample to illustrate it, take two distinct planes in R3 passing through 0. Their intersection is a line passing through 0, so it’s a subspace, too. Theorem 3. The intersection of two subspaces of a vector space is a subspace itself. We’ll develop a proof of this theorem in class. If x ∈ W and α is a scalar, use β = 0 and y =w0 in property (2) to conclude that. αx = αx + 0w0 ∈ W. Therefore W is a subspace. QED. In some cases it's easy to prove that a subset is not empty; so, in order to prove it's a subspace, it's sufficient to prove it's closed under linear combinations.Nov 7, 2016 · In order to prove that the subset U is a subspace of the vector space V, I need to show three things. Show that 0 → ∈ U. Show that if x →, y → ∈ U, then x → + y → ∈ U. Show that if x → ∈ U and a ∈ R, then a x → ∈ U. (1) Since U is given to be non-empty, let x 0 → ∈ U. Since u → + c v → ∈ U, if u → = v → ... Definition. A vector space V0 is a subspace of a vector space V if V0 ⊂ V and the linear operations on V0 agree with the linear operations on V. Proposition A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e., x,y ∈ S =⇒ x+y ∈ S, x ∈ S =⇒ rx ∈ S for all r ∈ R ...Problem Statement: Let T T be a linear operator on a vector space V V, and let λ λ be a scalar. The eigenspace V(λ) V ( λ) is the set of eigenvectors of T T with eigenvalue λ λ, together with 0 0. Prove that V(λ) V ( λ) is a T T -invariant subspace. So I need to show that T(V(λ)) ⊆V(λ) T ( V ( λ)) ⊆ V ( λ).T is a subspace of V. Also, the range of T is a subspace of W. Example 4. Let T : V !W be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W. [Hint: Typical elements of the range have the form T(x) and T(w) for some x;w 2V.] 1 λ to a subspace of P 2. You should get E 1 = span(1), E 2 = span(x−1), and E 4 = span(x2 −2x+1). 7. (12 points) Two interacting populations of foxes and hares can be modeled by the equations h(t+1) = 4h(t)−2f(t) f(t+1) = h(t)+f(t). a. (4 pts) Find a matrix A such that h(t+1) f(t+1) = A h(t) f(t) . A = 4 −2 1 1 . b. (8 pts) Find a ... I'm having a terrible time understanding subspaces (and, well, linear algebra in general). I'm presented with the problem: Determine whether the following are subspaces of C[-1,1]: a) The set of ... Looking at examples always helps to understand and also can provide counterexamples when you're proving something false. When it's true, you ...W2 = {f ∈ C0[a, b]: f(−x) = f(x) for all x} W 2 = { f ∈ C 0 [ a, b]: f ( − x) = f ( x) for all x }, the set of even continuous functions on [a, b] [ a, b] Okay, I know to show that W W is a subspace of V V: a. W W is non-empty. b. if x1,x2 ∈ W x 1, x 2 ∈ W then x1 +x2 ∈ W x 1 + x 2 ∈ W. c. for k ∈ R, kx1 ∈ W k ∈ R, k x 1 ...Proving polynomial to be subspace. Let V= P5 P 5 (R) = all the polynomials with real coefficients of degree at most 5. Let U= {rx+rx^4|rϵR} (1) Prove that U is a subspace. (2) Find a subspace W such that V=U⊕W. For the first proof, I know that I have to show how this polynomial satisfies the 3 conditions in order to be a subspace but I …The kernel of a linear transformation is a vector subspace. Given two vector spaces V and W and a linear transformation L : V !W we de ne a set: Ker(L) = f~v 2V jL(~v) = ~0g= L 1(f~0g) which we call the kernel of L. (some people call this the nullspace of L). Theorem As de ned above, the set Ker(L) is a subspace of V, in particular it is a ...1 Answer. To prove a subspace you need to show that the set is non-empty and that it is closed under addition and scalar multiplication, or shortly that aA1 + bA2 ∈ W a A 1 + b A 2 ∈ W for any A1,A2 ∈ W A 1, A 2 ∈ W. The set isn't empty since zero matrix is in the set.We say that W is a vector subspace (or simply subspace, sometimes also called linear subspace) of V iff W, viewed with the operations it inherits from V, is itself a vector space. ... Possible proof outlines for proving W is a subspace. Outline 1, with detail. (1) Check/observe that W is nonempty. (2) Show that W is closed under addition.Linear subspace. One-dimensional subspaces in the two-dimensional vector space over the finite field F5. The origin (0, 0), marked with green circles, belongs to any of six 1-subspaces, while each of 24 remaining points belongs to exactly one; a property which holds for 1-subspaces over any field and in all dimensions. If W is a subset of a vector space V and if W is itself a vector space under the inherited operations of addition and scalar multiplication from V, then W is called a subspace.1, 2 To show that the W is a subspace of V, it is enough to show that W is a subset of V The zero vector of V is in W Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this site About Us Learn more about Stack Overflow the company, and our products.Sep 19, 2015 · Proving a Subspace. Let V = C, the complex numbers viewed as a vector space over C. Let W be the subset of real numbers. Determine if W is a subspace of the vector space V. Give a complete proof using the subspace theorem, or else give a specific example to show that some subspace property fails. What I've done so far is: (0) W is not empty as ... For example, if we have linear maps. A : Rm → Rn and B : Rn → Rp, then Im(A) ∩ Ker(B) is a subspace, but we didn't prove it has a basis. This note ...I'm trying to prove that a given subset of a given vector space is an affine subspace. Now I'm having some trouble with the definition of an affine subspace and I'm not sure whether I have a firm . ... Proving that something is an affine subspace. Ask Question Asked 9 years, 10 months ago. Modified 9 years, 10 months ago. Viewed 6k timesThis test allows us to determine if a given set is a subspace of \(\mathbb{R}^n\). Notice that the subset \(V = \left\{ \vec{0} \right\}\) is a subspace of \(\mathbb{R}^n\) (called the zero subspace ), as is \(\mathbb{R}^n\) itself. A subspace which is not the zero subspace of \(\mathbb{R}^n\) is referred to as a proper subspace.I'm trying to prove that a given subset of a given vector space is an affine subspace. Now I'm having some trouble with the definition of an affine subspace and I'm not sure whether I have a firm . ... Proving that something is an affine subspace. Ask Question Asked 9 years, 10 months ago. Modified 9 years, 10 months ago. Viewed 6k timesI'm having a terrible time understanding subspaces (and, well, linear algebra in general). I'm presented with the problem: Determine whether the following are subspaces of C[-1,1]: a) The set ofResearch is conducted to prove or disprove a hypothesis or to learn new facts about something. There are many different reasons for conducting research. There are four general kinds of research: descriptive research, exploratory research, e...I'm trying to prove that a given subset of a given vector space is an affine subspace. Now I'm having some trouble with the definition of an affine subspace and I'm not sure whether I have a firm intuitive understanding of the concept. I have the following definition:Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this siteConsumerism is everywhere. The idea that people need to continuously buy the latest and greatest junk to be happy is omnipresent, and sometimes, people can lose sight of the simple things in life.Dec 22, 2014 · Please Subscribe here, thank you!!! https://goo.gl/JQ8NysHow to Prove a Set is a Subspace of a Vector Space We will prove the main theorem by using invariant subspaces and showing that if Wis T-invariant, then the characteristic polynomial of T Wdivides the characteristic polynomial of T. So, let us recall the de nition of a T-invariant space: De nition 2. Given a linear transformation T: V !V, a subspace WˆV is called T-invariant if for all x 2W, T ... We prove that the sum of subspaces of a vector space is a subspace of the vector space. The subspace criteria is used. Exercise and solution of Linear Algebra.To prove that the intersection U ∩ V U ∩ V is a subspace of Rn R n, we check the following subspace criteria: So condition 1 is met. Thus condition 2 is met. Since both U U and V V are subspaces, the scalar multiplication is closed in U U and V V, respectively.Linear Subspace Linear Span Review Questions 1.Suppose that V is a vector space and that U ˆV is a subset of V. Show that u 1 + u 2 2Ufor all u 1;u 2 2U; ; 2R implies that Uis a subspace of V. (In other words, check all the vector space requirements for U.) 2.Let P 3[x] be the vector space of degree 3 polynomials in the variable x. Check whetherLeon says that a nonempty subset that is closed under scalar multiplication and vector addition is a subspace. It turns out that you can prove that any nonempty subset of a vector space that is closed under scalar multiplication and vector addition always has to contain the zero vector. Hint: What is zero times a vector? Now use closure under ...The union of two subspaces is a subspace if and only if one of the subspaces is contained in the other. The "if" part should be clear: if one of the subspaces is contained in the other, then their union is just the one doing the containing, so it's a subspace. Now suppose neither subspace is contained in the other subspace.proving that it holds if it’s true and disproving it by a counterexample if it’s false. Lemma. Let W be a subspace of a vector space V . (a) The zero vector is in W. (b) If w ∈ W, then −w ∈ W. Note: These are not part of the axioms for a subspace: They are properties a subspace must have. SoTour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this siteSection 6.2 Orthogonal Complements ¶ permalink Objectives. Understand the basic properties of orthogonal complements. Learn to compute the orthogonal complement of a subspace. Recipes: shortcuts for computing the orthogonal complements of common subspaces. Picture: orthogonal complements in R 2 and R 3. Theorem: row rank equals …To prove that the intersection U ∩ V U ∩ V is a subspace of Rn R n, we check the following subspace criteria: So condition 1 is met. Thus condition 2 is met. Since both U U and V V are subspaces, the scalar multiplication is closed in U U and V V, respectively.T is a subspace of V. Also, the range of T is a subspace of W. Example 4. Let T : V !W be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W. [Hint: Typical elements of the range have the form T(x) and T(w) for some x;w 2V.] 1So as far as I understand the definition, an affine subspace is simply a set of points that is created by shifting the subspace UA U A by v ∈ V v ∈ V, i.e. by adding one vector of V to each element of UA U A. Is this correct? Now I have two example questions: 1) Let V be the vector space of all linear maps f: R f: R -> R R. Addition and ...A subspace is a term from linear algebra. Members of a subspace are all vectors, and they all have the same dimensions. For instance, a subspace of R^3 could be a plane which would be defined by two independent 3D vectors. These vectors need to follow certain rules. In essence, a combination of the vectors from the subspace must be in the ...138 Chapter 5. Vector Spaces: Theory and Practice observation answers the question “Given a matrix A, for what right-hand side vector, b, does Ax = b have a solution?” The answer is that there is a solution if and only if b is a linear combination of the columns (column vectors) of A. Definition 5.10 The column space of A ∈ Rm×n is the set of all …The closed under scalar multiplication property means that for every vector belonging to a set S, in order for this set to be considered a subspace of. R n. R^ {n} Rn it means that you can multiply any scalar to these vectors and the resulting vectors will still fall into the subspace. R n. R^ {n} Rn.Ask Question. Asked 9 years, 1 month ago. Modified 8 years, 4 months ago. Viewed 4k times. 0. Let V= P5 P 5 (R) = all the polynomials with real coefficients of degree at most 5. Let U= {rx+rx^4|rϵR} (1) Prove that U is a subspace. (2) Find a subspace W such that V=U⊕W.If X ⊆ V X ⊆ V is our vector subspace then we can simply determine what dim X dim X is. If 0 < dim X < dim V 0 < dim X < dim V then we know that X X is a proper subspace. The easiest way to check this is to find a basis for the subspace and check its length.Prove that it is actually inside the range (for this, you must understand what "range" is). Since your two vectors were arbitrary, then you will have proved that the range is closed under addition. Analogously with scalar multiplication. $\endgroup$Prove that this set is a vector space (by proving that it is a subspace of a known vector space). The set of all polynomials p with p(2) = p(3). I understand I need to satisfy, vector addition, scalar multiplication and show that it is non empty. Share. Watch on. A subspace (or linear subspace) of R^2 is a set of two-dimensional vectors within R^2, where the set meets three specific conditions: 1) The set includes the zero vector, 2) The set is closed under scalar multiplication, and 3) The set is closed under addition.When proving if a subset is a subspace, can I prove closure under addition and multiplication in a single proof? 4 How to prove that this new set of vectors form a basis?Any time you deal both with complex vector spaces and real vector spaces, you have to be certain of what "scalar multiplication" means. For example, the set $\mathbf{C}^{2}$ is also a real vector space under the same addition as before, but with multiplication only by real scalars, an operation we might denote $\cdot_{\mathbf{R}}$.. …3 ORTHOGONALITY 3 2. av = |a| v for all a ∈ F and v ∈ V; 3. Triangle inequality v +w≤ v + w for all v,w∈ V. Note that in fact v≥ 0 for all v ∈ V since 0= v −v≤ v +− v =2 v . Next we want to show that a norm can in fact be defined from an inner product via v=The kernel of a linear transformation is a vector subspace. Given two vector spaces V and W and a linear transformation L : V !W we de ne a set: Ker(L) = f~v 2V jL(~v) = ~0g= L 1(f~0g) which we call the kernel of L. (some people call this the nullspace of L). Theorem As de ned above, the set Ker(L) is a subspace of V, in particular it is a ...When proving if a subset is a subspace, can I prove closure under addition and multiplication in a single proof? 4 How to prove that this new set of vectors form a basis?If x ∈ W and α is a scalar, use β = 0 and y =w0 in property (2) to conclude that. αx = αx + 0w0 ∈ W. Therefore W is a subspace. QED. In some cases it's easy to prove that a subset is not empty; so, in order to prove it's a subspace, it's sufficient to prove it's closed under linear combinations.Utilize the subspace test to determine if a set is a subspace of a given vector space. Extend a linearly independent set and shrink a spanning set to a basis of a …Let B = A −λiI B = A − λ i I, then we need to show that the kernel of B B is a vector space. However, note that ker(B) ⊆Rn ker ( B) ⊆ R n, so instead of verifying the axioms of a vector space, we can simply show that ker(B) ker ( B) is a subspace of Rn R n. First note that ker(B) ker ( B) is non-empty since it contains the trivial ...If x ∈ W and α is a scalar, use β = 0 and y =w0 in property (2) to conclude that. αx = αx + 0w0 ∈ W. Therefore W is a subspace. QED. In some cases it's easy to prove that a subset is not empty; so, in order to prove it's a subspace, it's sufficient to prove it's closed under linear combinations.It can arise in many ways by operations that always produce subspaces, like taking intersections of subspaces or the kernel of a linear map. It has dimension$~0$: one cannot find a linearly independent set containing any vectors at all, since $\{\vec0\}$ is already linearly dependent (taking $1$ times that vector is a nontrivial linear ...In other words, to test if a set is a subspace of a Vector Space, you only need to check if it closed under addition and scalar multiplication. Easy! ex. Test whether or not the plane 2x+ 4y + 3z = 0 is a subspace of R3. To test if the plane is a subspace, we will take arbitrary points 0 @ x 1 y 1 z 1 1 A, and 0 @ x 2 y 2 z 2 1 A, both of which ...Thus, to prove a subset W is not a subspace, we just need to find a counterexample of any of the three criteria. Solution (1). S1 = {x ∈ R3 ∣ x1 ≥ 0} The subset S1 does not satisfy condition 3. For example, consider the vector. x = ⎡⎣⎢1 0 0⎤⎦⎥. Then since x1 = 1 ≥ 0, the vector x ∈ S1.To prove that the intersection U ∩ V U ∩ V is a subspace of Rn R n, we check the following subspace criteria: So condition 1 is met. Thus condition 2 is met. Since both U U and V V are subspaces, the scalar multiplication is closed in U U and V V, respectively.through .0;0;0/ is a subspace of the full vector space R3. DEFINITION A subspace of a vector space is a set of vectors (including 0) that satisfies two requirements: If v and w …De nition We say that a subset Uof a vector space V is a subspace of V if Uis a vector space under the inherited addition and scalar multiplication operations of V. Example Consider a plane Pin R3 through the origin: ax+ by+ cz= 0 This plane can be expressed as the homogeneous system a b c 0 B @ x y z 1 C A= 0, MX= 0. If X 1 and XWe will prove the main theorem by using invariant subspaces and showing that if Wis T-invariant, then the characteristic polynomial of T Wdivides the characteristic polynomial of T. So, let us recall the de nition of a T-invariant space: De nition 2. Given a linear transformation T: V !V, a subspace WˆV is called T-invariant if for all x 2W, T ...The idea is to work straight from the definition of subspace. All we have to do is show that Wλ = {x ∈ Rn: Ax = λx} W λ = { x ∈ R n: A x = λ x } satisfies the vector space axioms; we already know Wλ ⊂Rn W λ ⊂ R n, so if we show that it is a vector space in and of itself, we are done. So, if α, β ∈R α, β ∈ R and v, w ∈ ...Show that S is a subspace of P3. So I started by checking the first axiom (closed under addition) to see if S is a subspace of P3: Assume. polynomial 1 = a1 +b1x2 +c1x3 a 1 + b 1 x 2 + c 1 x 3. polynomial 2 = a2 +b2x2 +c2x3 a 2 + b 2 x 2 + c 2 x 3.May 25, 2017 · How to prove a type of functions is a subspace of the vector space of all functions. 0 Linear algebra: distinguishing between Vector Subspace and more general sub-set of vectors It can arise in many ways by operations that always produce subspaces, like taking intersections of subspaces or the kernel of a linear map. It has dimension$~0$: one cannot find a linearly independent set containing any vectors at all, since $\{\vec0\}$ is already linearly dependent (taking $1$ times that vector is a nontrivial linear ...Solve the system of equations. α ( 1 1 1) + β ( 3 2 1) + γ ( 1 1 0) + δ ( 1 0 0) = ( a b c) for arbitrary a, b, and c. If there is always a solution, then the vectors span R 3; if there is a choice of a, b, c for which the system is inconsistent, then the vectors do not span R 3. You can use the same set of elementary row operations I used ...Viewed 3k times. 1. In order to proof that a set A is a subspace of a Vector space V we'd need to prove the following: Enclosure under addition and scalar multiplication. The presence of the 0 vector. And I've done decent when I had to prove "easy" or "determined" sets A. Now this time I need to prove that F and G are subspaces of V where:An invariant subspace of a linear mapping. from some vector space V to itself is a subspace W of V such that T ( W) is contained in W. An invariant subspace of T is also said to be T invariant. [1] If W is T -invariant, we can restrict T …Definition. A vector space V0 is a subspace of a vector space V if V0 ⊂ V and the linear operations on V0 agree with the linear operations on V. Proposition A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e., x,y ∈ S =⇒ x+y ∈ S, x ∈ S =⇒ rx ∈ S for all r ∈ R ...provide a useful set of vector properties. Theorem 1.2. If u,v,w ∈ V (a vector space) such that u+w = v +w, then u = v. Corollary 1.1. The zero vector and the additive inverse vector (for each vector) are unique. Theorem 1.3. Let V be a vector space over the field F, u ∈ V, and k ∈ F. Then the following statement are true: (a) 0u = 0 (b ... "Let $Π$ be a plane in $\mathbb{R}^n$ passing through the origin, and parallel to some vectors $a,b\in \mathbb{R}^n$. Then the set $V$, of position vectors of points of $Π$, is given by $V=\{μa+νb: μ,ν\in \mathbb{R}\}$. Prove that $V$ is a subspace of $\mathbb{R}^n$." I think I need to prove that: I) The zero vector is in $V$.Sep 17, 2022 · Since \(\text{Span}\{v_1,v_2,\ldots,v_p\}\) satisfies the three defining properties of a subspace, it is a subspace. Now let \(V\) be a subspace of \(\mathbb{R}^n\). If \(V\) is the zero subspace, then it is the span of the empty set, so we may assume \(V\) is nonzero. Choose a nonzero vector \(v_1\) in \(V\). Note that V is always a subspace of V, as is the trivial vector space which contains only 0. Proposition 1. Suppose Uand W are subspaces of some vector space. Then U\W is a subspace of Uand a subspace of W. Proof. We only show that U\Wis a subspace of U; the same result follows for Wsince U\W= W\U.is the dimension of the subspace of R4 that they span? 5. [5] Let C(R) be the linear space of all continuous functions from R to R. a) Let S c be the set of di erentiable functions u(x) that satisfy the di erential equa-tion u0= 2xu+ c for all real x. For which value(s) of the real constant cis this set a linear subspace of C(R)?We’ll prove that in a moment, but rst, for an ex-ample to illustrate it, take two distinct planes in R3 passing through 0. Their intersection is a line passing through 0, so it’s a subspace, too. Theorem 3. The intersection of two subspaces of a vector space is a subspace itself. We’ll develop a proof of this theorem in class. Since Y is a Banach space, it is convergent to some element in Y. Call that element Ax, i.e. lim n → ∞Anx = Ax Since x was arbitrary, Ax is defined for any x ∈ X. Thus, A is a map from X to Y defined by x → Ax. We need to show that A is linear, bounded, and Ann → ∞ → A in the operator norm.If X ⊆ V X ⊆ V is our vector subspace then we can simply determine what dim X dim X is. If 0 < dim X < dim V 0 < dim X < dim V then we know that X X is a proper …We will prove the main theorem by using invariant subspaces and showing that if Wis T-invariant, then the characteristic polynomial of T Wdivides the characteristic polynomial of T. So, let us recall the de nition of a T-invariant space: De nition 2. Given a linear transformation T: V !V, a subspace WˆV is called T-invariant if for all x 2W, T ... Interviews are important because they offer a chance for companies and job applicants to learn if they might fit well together. Candidates generally go into interviews hoping to prove that they have the mindset and qualifications to perform...Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. It only takes a minute to sign up.Just to be pedantic, you are trying to show that S S is a linear subspace (a.k.a. vector subspace) of R3 R 3. The context is important here because, for example, any subset of R3 R 3 is a topological subspace. There are two conditions to be satisfied in order to be a vector subspace: (1) ( 1) we need v + w ∈ S v + w ∈ S for all v, w ∈ S v ...We will prove the main theorem by using invariant subspaces and showing that if Wis T-invariant, then the characteristic polynomial of T Wdivides the characteristic polynomial of T. So, let us recall the de nition of a T-invariant space: De nition 2. Given a linear transformation T: V !V, a subspace WˆV is called T-invariant if for all x 2W, T .... The span [S] [ S] by definition is the intersecAny subset with these characteristics is a sub If W is a subset of a vector space V and if W is itself a vector space under the inherited operations of addition and scalar multiplication from V, then W is called a subspace.1, 2 To show that the W is a subspace of V, it is enough to show that W is a subset of V The zero vector of V is in W I am wondering if someone can check my proof that the su I am wondering if someone can check my proof that the sum of two subspaces is a subspace: 1) First show that 0 ∈W1 +W2 0 ∈ W 1 + W 2: Since W1,W2 W 1, W 2 are subspaces, we know that 0 ∈W1,W2 0 ∈ W 1, W 2. So if w1,w2 = 0,w1 +w2 = 0 + 0 = 0 ∈W1 +W2 w 1, w 2 = 0, w 1 + w 2 = 0 + 0 = 0 ∈ W 1 + W 2. 2) Show that cu + v ∈W1 +W2 c u ...Except for the typo I pointed out in my comment, your proof that the kernel is a subspace is perfectly fine. Note that it is not necessary to separately show that $0$ is contained in the set, since this is a consequence of closure under scalar multiplication. In order to prove that the subset U is a subspace of the vector ...

Continue Reading